

MEASURING DIRECT EFFECTS OF PEP TOKENS ON THE ENVIRONMENTAL PERFORMANCE OF IN-DUSTRIAL PRODUCTION

Goal and scope

Purchasing a carbon credit amounts to avoiding emissions of greenhouse gas (GHG) or the removal of carbon dioxide (CO₂) from the atmosphere. PEP focuses on avoiding GHG emissions in energy-intensive industrial sectors. When cleaner production measures are implemented to achieve such GHG emissions avoidances, **other environmental benefits can be accounted for**. Potential PEP token buyers should be aware of those co-benefits, as it may result in increasing attractiveness of PEP tokens.

We selected three important, energy-intensive industrial sectors and investigated by means of **life cycle assessment** (LCA) what other environmental benefits should be accounted for besides GHG emissions reductions. These industrial sectors also fall under the scope of PEP, as the latter aims **to reduce the use of fossil fuels in industrial production**. For each sector, we defined a functional unit (FU) and two scenarios achieving that functional unit: one with and one without **cleaner production measures to reduce GHG emissions**. We used life cycle data from the ecoinvent Association to model the environmental impacts of the base case and cleaner production scenarios, i.e., quantify savings achieved by the cleaner production scenarios. Next, we scaled GHG savings between base case and cleaner production scenarios to **1 ton of CO₂ equivalents** and noted the **savings in other environmental impact categories**.

Sector	Alternative fuels and raw ma- terials (AFRs) in cement in- dustry	Electric-arc furnaces for steel production	Secondary sources for plas- tics
Func- tional unit	Production of 1 kg of clinker	Production of 1 kg of low-al- loyed steel	Production of 1 kg of polysty- rene foam slab
Base case	Clinker produced exclusively with primary raw materials, e.g., coal and petcoke	Steel produced in a blast fur- nace-basic oxygen furnace (BF-BOF)	Polystyrene foam slab pro- duced with 10% of input mate- rials consisting of recycled plastics
Cleaner produc- tion	Clinker produced exclusively with primary raw materials, e.g., e.g., spent tires and sewage sludge	Steel produced in an electric arc furnace (EAF)	Polystyrene foam slab pro- duced with 100% of input mate- rials consisting of recycled plastics

Life cycle inventory

To enable a fair comparison of environmental impacts of virgin and secondary raw materials used in the cement, steel, and plastics industry, we used a **cut-off approach** (see Nordelöf et al., 2019¹) instead of the end-of-life recycling approach. Concretely, the environmental impacts of resource extraction, manufacturing, and use of materials used a second time (i.e., secondary war materials) are allocated to their first life, while end-of-life impacts are limited to collection. The ecoinvent datasets used are shown below:

Sector	Cement	Steel	Plastics
Base case	clinker production clinker Cutoff, U (Peru, with no AFR use)	steel production, con- verter, low-alloyed steel, low-alloyed Cutoff, U	polystyrene foam slab production, 10% recycled polystyrene foam slab, 10% recycled Cutoff, U
Cleaner production	clinker production clinker Cutoff, U (Swit- zerland)	steel production, electric, low-alloyed steel, low-al- loyed Cutoff, U	polystyrene foam slab production, 100% recycled polystyrene foam slab Cutoff, U

Life cycle impact assessment

Environmental impacts assessed according to Recipe 2016:

Sector	Cement	Steel	Plastics
GHG emission reduc- tions through cleaner production	12%	36%	90%
Co-benefits (savings) arising from 1 ton of CO ₂ avoided	4 tons of pollutants toxic for terrestrial eco- systems (63%)	10 tons of pollutants toxic for terrestrial eco- systems (57%)	More than 700 kg of pollu- tants toxic for terrestrial ecosystems (58%)
	Nearly half a ton of fossil fuels (57%)	More than 200 kg of fos- sil fuels (33%)	Half a ton of fossil fuels (94%)
	More than half a ton of pollutants toxic for hu- mans (31%)	Nearly a ton of pollu- tants toxic for humans (30%)	Some 200 kg of pollutants toxic for humans (76%)
			20 liters of water (94%)
	53 liters of water (76%)	Almost 800 kg of metal and mineral resources (79%)	

Interpretation

Cleaner production measures result in **significant co-benefits across major energy-intensive industries in almost the same four to five environmental impact categories**. Indeed, Recipe 2016 accounts for **18 environmental impact categories**.

Contact

Dr. Grégoire Meylan grégoire.meylan@zhaw.ch 058 934 42 43

¹ Nordelöf, A., Poulikidou, S., Chordia, M., Bitencourt de Oliveira, F., Tivander, J., & Arvidsson, R. (2019). Methodological Approaches to End-Of-Life Modelling in Life Cycle Assessments of Lithium-Ion Batteries. Batteries, 5(3), 51.